Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
J Mater Sci Mater Med ; 27(12): 176, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27752974

RESUMO

Hydrogels are suitable materials to promote cell proliferation and tissue support because of their hydrophilic nature, porous structure and sticky properties. However, hydrogel synthesis involves the addition of additives that can increase the risk of inducing cytotoxicity. Sterilization is a critical process for hydrogel clinical use as a proper scaffold for tissue engineering. In this study, poly(ethylene glycol) (PEG), poly(ethylene glycol)-chitosan (PEG-CH) and multi-arm PEG hydrogels were synthesized by free radical polymerization and sterilized by gamma irradiation or disinfected using 70 % ethanol. The biocompatibility assessment in human fibroblasts and hemocompatibility studies (hemolysis, platelet aggregation, morphology of mononuclear cells and viability) in peripheral blood from healthy volunteers (ex vivo), were performed. The sterilization or disinfection effect on hydrogel structures was evaluated by FT-IR spectroscopy. Results indicated that hydrogels do not induce any damage to fibroblasts, erythrocytes, platelets or mononuclear cells. Moreover, there was no significant difference in the biocompatibility after the sterilization or disinfection treatment. However, after gamma irradiation, several IR spectroscopic bands were shifted to higher or lower energies with different intensity in all hydrogels. In particular, several bands associated to carboxyl or hydroxyl groups were slightly shifted, possibly associated to scission reactions. The disinfection treatment (70 % ethanol) and γ-irradiation at 13.83 ± 0.7 kGy did not induce morphological damages and yielded sterile and biocompatible PEG hydrogels potentially useful for clinical applications.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Tecidos Suporte , Proliferação de Células , Células Cultivadas , Quitosana/química , Etanol/química , Fibroblastos/metabolismo , Raios gama , Humanos , Hidrogéis/química , Agregação Plaquetária , Espectroscopia de Infravermelho com Transformada de Fourier
3.
J Appl Oral Sci ; 20(5): 544-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23138741

RESUMO

UNLABELLED: In orthodontics, fixed appliances placed in the oral cavity are colonized by microorganisms. OBJECTIVE: The purpose of this study was to quantitatively determine the independent bacterial colonization of S. mutans and S. sobrinus in orthodontic composite resins. MATERIAL AND METHODS: Seven orthodontic composite adhesives for bonding brackets were selected and classified into 14 groups; (GIm, GIs) Enlight, (GIIm, GIIs) Grengloo, (GIIIm, GIIIs) Kurasper F, (GIVm, GIVs) BeautyOrtho Bond, (GVm, GVs) Transbond CC, (GVIm, GVIs) Turbo Bond II, (GVIIm, GVIIs) Blugloo. 60 blocks of 4x4x1 mm of each orthodontic composite resin were made (total 420 blocks), and gently polished with sand-paper and ultrasonically cleaned. S. mutans and S. sobrinus were independently cultivated. For the quantitative analysis, a radioactive marker was used to codify the bacteria (³H) adhered to the surface of the materials. The blocks were submerged in a solution with microorganisms previously radiolabeled and separated (210 blocks for S. mutans and 210 blocks for S. sobrinus) for 2 hours at 37 ºC. Next, the blocks were placed in a combustion system, to capture the residues and measure the radiation. The statistical analysis was calculated with the ANOVA test (Sheffè post-hoc). RESULTS: Significant differences of bacterial adhesion were found amongst the groups. In the GIm and GIs the significant lowest scores for both microorganisms were shown; in contrast, the values of GVII for both bacteria were significantly the highest. CONCLUSIONS: This study showed that the orthodontic composite resin evaluated in the GIm and GIs, obtained the lowest adherence of S. mutans and S. sobrinus, which may reduce the enamel demineralization and the risk of white spot lesion formation.


Assuntos
Aderência Bacteriana/fisiologia , Resinas Compostas , Cimentos Dentários , Braquetes Ortodônticos/microbiologia , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus sobrinus/crescimento & desenvolvimento , Resinas Acrílicas , Análise de Variância , Carga Bacteriana , Bis-Fenol A-Glicidil Metacrilato , Polimento Dentário , Ácidos Fosfóricos , Cimentos de Resina , Propriedades de Superfície
4.
J. appl. oral sci ; 20(5): 544-549, Sept.-Oct. 2012. tab
Artigo em Inglês | LILACS | ID: lil-654919

RESUMO

In Orthodontics, fixed appliances placed in the oral cavity are colonized by microorganisms. OBJECTIVE: The purpose of this study was to quantitatively determine the independent bacterial colonization of S. mutans and S. sobrinus in orthodontic composite resins. MATERIAL AND METHODS: Seven orthodontic composite adhesives for bonding brackets were selected and classified into 14 groups; (GIm, GIs) Enlight, (GIIm, GIIs) Grengloo, (GIIIm, GIIIs) Kurasper F, (GIVm, GIVs) BeautyOrtho Bond, (GVm, GVs) Transbond CC, (GVIm, GVIs) Turbo Bond II, (GVIIm, GVIIs) Blugloo. 60 blocks of 4x4x1 mm of each orthodontic composite resin were made (total 420 blocks), and gently polished with sand-paper and ultrasonically cleaned. S. mutans and S. sobrinus were independently cultivated. For the quantitative analysis, a radioactive marker was used to codify the bacteria (³H) adhered to the surface of the materials. The blocks were submerged in a solution with microorganisms previously radiolabeled and separated (210 blocks for S. mutans and 210 blocks for S. sobrinus) for 2 hours at 37ºC. Next, the blocks were placed in a combustion system, to capture the residues and measure the radiation. The statistical analysis was calculated with the ANOVA test (Sheffè post-hoc). RESULTS: Significant differences of bacterial adhesion were found amongst the groups. In the GIm and GIs the significant lowest scores for both microorganisms were shown; in contrast, the values of GVII for both bacteria were significantly the highest. CONCLUSIONS: This study showed that the orthodontic composite resin evaluated in the GIm and GIs, obtained the lowest adherence of S. mutans and S. sobrinus, which may reduce the enamel demineralization and the risk of white spot lesion formation.


Assuntos
Aderência Bacteriana/fisiologia , Resinas Compostas , Cimentos Dentários , Braquetes Ortodônticos/microbiologia , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus sobrinus/crescimento & desenvolvimento , Resinas Acrílicas , Análise de Variância , Carga Bacteriana , Bis-Fenol A-Glicidil Metacrilato , Polimento Dentário , Ácidos Fosfóricos , Cimentos de Resina , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...